Direct Characterization of Transcription Elongation by RNA Polymerase I
نویسندگان
چکیده
RNA polymerase I (Pol I) transcribes ribosomal DNA and is responsible for more than 60% of transcription in a growing cell. Despite this fundamental role that directly impacts cell growth and proliferation, the kinetics of transcription by Pol I are poorly understood. This study provides direct characterization of S. Cerevisiae Pol I transcription elongation using tethered particle microscopy (TPM). Pol I was shown to elongate at an average rate of approximately 20 nt/s. However, the maximum speed observed was, in average, about 60 nt/s, comparable to the rate calculated based on the in vivo number of active genes, the cell division rate and the number of engaged polymerases observed in EM images. Addition of RNA endonucleases to the TPM elongation assays enhanced processivity. Together, these data suggest that additional transcription factors contribute to efficient and processive transcription elongation by RNA polymerase I in vivo.
منابع مشابه
Dual Roles for Spt5p in Rna Polymerase I Transcription
Spt5p is a universally conserved transcription factor that plays multiple roles in eukaryotic transcription elongation. Spt5p forms a heterodimer with Spt4p and collaborates with other transcription factors to pause or promote RNA polymerase II transcription elongation. We have shown previously that Spt4p and Spt5p also influence synthesis of ribosomal RNA (rRNA) by RNA polymerase I (Pol I); ho...
متن کاملCTD kinase I is involved in RNA polymerase I transcription.
RNA polymerase II carboxy terminal domain (CTD) kinases are key elements in the control of mRNA synthesis. Yeast CTD kinase I (CTDK-I), is a non-essential complex involved in the regulation of mRNA synthesis at the level of transcription elongation, pre-mRNA 3' formation and nuclear export. Here, we report that CTDK-I is also involved in ribosomal RNA synthesis. We show that CTDK-I is localized...
متن کاملYeast transcription elongation factor Spt5 associates with RNA polymerase I and RNA polymerase II directly.
Spt5 is a transcription factor conserved in all three domains of life. Spt5 homologues from bacteria and archaea bind the largest subunit of their respective RNA polymerases. Here we demonstrate that Spt5 directly associates with RNA polymerase (Pol) I and RNA Pol II in yeast through its central region containing conserved NusG N-terminal homology and KOW domains. Deletion analysis of SPT5 supp...
متن کاملTFIIH is an elongation factor of RNA polymerase I
TFIIH is a multisubunit factor essential for transcription initiation and promoter escape of RNA polymerase II and for the opening of damaged DNA double strands in nucleotide excision repair (NER). In this study, we have analyzed at which step of the transcription cycle TFIIH is essential for transcription by RNA polymerase I. We demonstrate that TFIIH associates with the rDNA promoter and gene...
متن کاملHuman transcription release factor 2 dissociates RNA polymerases I and II stalled at a cyclobutane thymine dimer.
RNA polymerase II stalled at a lesion in the transcribed strand is thought to constitute a signal for transcription-coupled repair. Transcription factors that act on RNA polymerase in elongation mode potentially influence this mode of repair. Previously, it was shown that transcription elongation factors TFIIS and Cockayne's syndrome complementation group B protein did not disrupt the ternary c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2016